Metamath Proof Explorer


Theorem atcvrlln

Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012)

Ref Expression
Hypotheses atcvrlln.b B=BaseK
atcvrlln.c C=K
atcvrlln.a A=AtomsK
atcvrlln.n N=LLinesK
Assertion atcvrlln KHLXBYBXCYXAYN

Proof

Step Hyp Ref Expression
1 atcvrlln.b B=BaseK
2 atcvrlln.c C=K
3 atcvrlln.a A=AtomsK
4 atcvrlln.n N=LLinesK
5 simpll1 KHLXBYBXCYXAKHL
6 simpll3 KHLXBYBXCYXAYB
7 simpr KHLXBYBXCYXAXA
8 simplr KHLXBYBXCYXAXCY
9 1 2 3 4 llni KHLYBXAXCYYN
10 5 6 7 8 9 syl31anc KHLXBYBXCYXAYN
11 simpr KHLXBYBXCYYNYN
12 simpll1 KHLXBYBXCYYNKHL
13 simpll3 KHLXBYBXCYYNYB
14 eqid joinK=joinK
15 1 14 3 4 islln3 KHLYBYNpAqApqY=pjoinKq
16 12 13 15 syl2anc KHLXBYBXCYYNYNpAqApqY=pjoinKq
17 11 16 mpbid KHLXBYBXCYYNpAqApqY=pjoinKq
18 simp1l1 KHLXBYBXCYpAqApqY=pjoinKqKHL
19 simp1l2 KHLXBYBXCYpAqApqY=pjoinKqXB
20 simp2l KHLXBYBXCYpAqApqY=pjoinKqpA
21 simp2r KHLXBYBXCYpAqApqY=pjoinKqqA
22 simp3l KHLXBYBXCYpAqApqY=pjoinKqpq
23 simp1r KHLXBYBXCYpAqApqY=pjoinKqXCY
24 simp3r KHLXBYBXCYpAqApqY=pjoinKqY=pjoinKq
25 23 24 breqtrd KHLXBYBXCYpAqApqY=pjoinKqXCpjoinKq
26 1 14 2 3 cvrat2 KHLXBpAqApqXCpjoinKqXA
27 18 19 20 21 22 25 26 syl132anc KHLXBYBXCYpAqApqY=pjoinKqXA
28 27 3exp KHLXBYBXCYpAqApqY=pjoinKqXA
29 28 rexlimdvv KHLXBYBXCYpAqApqY=pjoinKqXA
30 29 adantr KHLXBYBXCYYNpAqApqY=pjoinKqXA
31 17 30 mpd KHLXBYBXCYYNXA
32 10 31 impbida KHLXBYBXCYXAYN