Metamath Proof Explorer


Axiom ax-9d1

Description: Distinct variable version of ax-6 , equal variables case. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion ax-9d1 ¬ x ¬ x = x

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvar x
1 0 cv setvar x
2 1 1 wceq wff x = x
3 2 wn wff ¬ x = x
4 3 0 wal wff x ¬ x = x
5 4 wn wff ¬ x ¬ x = x