Metamath Proof Explorer


Axiom ax-9d1

Description: Distinct variable version of ax-6 , equal variables case. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion ax-9d1 ¬ ∀ 𝑥 ¬ 𝑥 = 𝑥

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 0 cv 𝑥
2 1 1 wceq 𝑥 = 𝑥
3 2 wn ¬ 𝑥 = 𝑥
4 3 0 wal 𝑥 ¬ 𝑥 = 𝑥
5 4 wn ¬ ∀ 𝑥 ¬ 𝑥 = 𝑥