Metamath Proof Explorer


Axiom ax-bj-adj

Description: Axiom of adjunction. (Contributed by BJ, 19-Jan-2025)

Ref Expression
Assertion ax-bj-adj x y z t t z t x t = y

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvar x
1 vy setvar y
2 vz setvar z
3 vt setvar t
4 3 cv setvar t
5 2 cv setvar z
6 4 5 wcel wff t z
7 0 cv setvar x
8 4 7 wcel wff t x
9 1 cv setvar y
10 4 9 wceq wff t = y
11 8 10 wo wff t x t = y
12 6 11 wb wff t z t x t = y
13 12 3 wal wff t t z t x t = y
14 13 2 wex wff z t t z t x t = y
15 14 1 wal wff y z t t z t x t = y
16 15 0 wal wff x y z t t z t x t = y