Metamath Proof Explorer


Theorem bj-adjg1

Description: Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-adjg1 A V A x V

Proof

Step Hyp Ref Expression
1 uneq1 y = A y x = A x
2 1 eleq1d y = A y x V A x V
3 ax-bj-adj y x z t t z t y t = x
4 3 spi x z t t z t y t = x
5 4 spi z t t z t y t = x
6 bj-axadj y x V z t t z t y t = x
7 5 6 mpbir y x V
8 2 7 vtoclg A V A x V