Metamath Proof Explorer


Theorem bj-adjg1

Description: Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-adjg1 ( 𝐴𝑉 → ( 𝐴 ∪ { 𝑥 } ) ∈ V )

Proof

Step Hyp Ref Expression
1 uneq1 ( 𝑦 = 𝐴 → ( 𝑦 ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) )
2 1 eleq1d ( 𝑦 = 𝐴 → ( ( 𝑦 ∪ { 𝑥 } ) ∈ V ↔ ( 𝐴 ∪ { 𝑥 } ) ∈ V ) )
3 ax-bj-adj 𝑦𝑥𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑦𝑡 = 𝑥 ) )
4 3 spi 𝑥𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑦𝑡 = 𝑥 ) )
5 4 spi 𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑦𝑡 = 𝑥 ) )
6 bj-axadj ( ( 𝑦 ∪ { 𝑥 } ) ∈ V ↔ ∃ 𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑦𝑡 = 𝑥 ) ) )
7 5 6 mpbir ( 𝑦 ∪ { 𝑥 } ) ∈ V
8 2 7 vtoclg ( 𝐴𝑉 → ( 𝐴 ∪ { 𝑥 } ) ∈ V )