Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-snfromadj | ⊢ { 𝑥 } ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0un | ⊢ ( ∅ ∪ { 𝑥 } ) = { 𝑥 } | |
2 | 0ex | ⊢ ∅ ∈ V | |
3 | bj-adjg1 | ⊢ ( ∅ ∈ V → ( ∅ ∪ { 𝑥 } ) ∈ V ) | |
4 | 2 3 | ax-mp | ⊢ ( ∅ ∪ { 𝑥 } ) ∈ V |
5 | 1 4 | eqeltrri | ⊢ { 𝑥 } ∈ V |