Metamath Proof Explorer


Theorem bj-snfromadj

Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-snfromadj { 𝑥 } ∈ V

Proof

Step Hyp Ref Expression
1 0un ( ∅ ∪ { 𝑥 } ) = { 𝑥 }
2 0ex ∅ ∈ V
3 bj-adjg1 ( ∅ ∈ V → ( ∅ ∪ { 𝑥 } ) ∈ V )
4 2 3 ax-mp ( ∅ ∪ { 𝑥 } ) ∈ V
5 1 4 eqeltrri { 𝑥 } ∈ V