Metamath Proof Explorer


Theorem bj-snfromadj

Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-snfromadj x V

Proof

Step Hyp Ref Expression
1 0un x = x
2 0ex V
3 bj-adjg1 V x V
4 2 3 ax-mp x V
5 1 4 eqeltrri x V