Metamath Proof Explorer


Theorem bj-snfromadj

Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-snfromadj
|- { x } e. _V

Proof

Step Hyp Ref Expression
1 0un
 |-  ( (/) u. { x } ) = { x }
2 0ex
 |-  (/) e. _V
3 bj-adjg1
 |-  ( (/) e. _V -> ( (/) u. { x } ) e. _V )
4 2 3 ax-mp
 |-  ( (/) u. { x } ) e. _V
5 1 4 eqeltrri
 |-  { x } e. _V