Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-snfromadj | |- { x } e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0un | |- ( (/) u. { x } ) = { x } |
|
2 | 0ex | |- (/) e. _V |
|
3 | bj-adjg1 | |- ( (/) e. _V -> ( (/) u. { x } ) e. _V ) |
|
4 | 2 3 | ax-mp | |- ( (/) u. { x } ) e. _V |
5 | 1 4 | eqeltrri | |- { x } e. _V |