Metamath Proof Explorer


Theorem bj-adjg1

Description: Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-adjg1
|- ( A e. V -> ( A u. { x } ) e. _V )

Proof

Step Hyp Ref Expression
1 uneq1
 |-  ( y = A -> ( y u. { x } ) = ( A u. { x } ) )
2 1 eleq1d
 |-  ( y = A -> ( ( y u. { x } ) e. _V <-> ( A u. { x } ) e. _V ) )
3 ax-bj-adj
 |-  A. y A. x E. z A. t ( t e. z <-> ( t e. y \/ t = x ) )
4 3 spi
 |-  A. x E. z A. t ( t e. z <-> ( t e. y \/ t = x ) )
5 4 spi
 |-  E. z A. t ( t e. z <-> ( t e. y \/ t = x ) )
6 bj-axadj
 |-  ( ( y u. { x } ) e. _V <-> E. z A. t ( t e. z <-> ( t e. y \/ t = x ) ) )
7 5 6 mpbir
 |-  ( y u. { x } ) e. _V
8 2 7 vtoclg
 |-  ( A e. V -> ( A u. { x } ) e. _V )