Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-axadj | |- ( ( x u. { y } ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t = y ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elun |  |-  ( t e. ( x u. { y } ) <-> ( t e. x \/ t e. { y } ) ) | |
| 2 | velsn |  |-  ( t e. { y } <-> t = y ) | |
| 3 | 2 | orbi2i |  |-  ( ( t e. x \/ t e. { y } ) <-> ( t e. x \/ t = y ) ) | 
| 4 | 1 3 | bitri |  |-  ( t e. ( x u. { y } ) <-> ( t e. x \/ t = y ) ) | 
| 5 | 4 | bj-clex |  |-  ( ( x u. { y } ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t = y ) ) ) |