Metamath Proof Explorer


Theorem bj-axadj

Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axadj
|- ( ( x u. { y } ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t = y ) ) )

Proof

Step Hyp Ref Expression
1 elun
 |-  ( t e. ( x u. { y } ) <-> ( t e. x \/ t e. { y } ) )
2 velsn
 |-  ( t e. { y } <-> t = y )
3 2 orbi2i
 |-  ( ( t e. x \/ t e. { y } ) <-> ( t e. x \/ t = y ) )
4 1 3 bitri
 |-  ( t e. ( x u. { y } ) <-> ( t e. x \/ t = y ) )
5 4 bj-clex
 |-  ( ( x u. { y } ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t = y ) ) )