Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-axadj | |- ( ( x u. { y } ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t = y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun | |- ( t e. ( x u. { y } ) <-> ( t e. x \/ t e. { y } ) ) |
|
2 | velsn | |- ( t e. { y } <-> t = y ) |
|
3 | 2 | orbi2i | |- ( ( t e. x \/ t e. { y } ) <-> ( t e. x \/ t = y ) ) |
4 | 1 3 | bitri | |- ( t e. ( x u. { y } ) <-> ( t e. x \/ t = y ) ) |
5 | 4 | bj-clex | |- ( ( x u. { y } ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t = y ) ) ) |