Metamath Proof Explorer


Theorem bj-axadj

Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axadj x y V z t t z t x t = y

Proof

Step Hyp Ref Expression
1 elun t x y t x t y
2 velsn t y t = y
3 2 orbi2i t x t y t x t = y
4 1 3 bitri t x y t x t = y
5 4 bj-clex x y V z t t z t x t = y