Metamath Proof Explorer


Theorem bj-axadj

Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axadj ( ( 𝑥 ∪ { 𝑦 } ) ∈ V ↔ ∃ 𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 elun ( 𝑡 ∈ ( 𝑥 ∪ { 𝑦 } ) ↔ ( 𝑡𝑥𝑡 ∈ { 𝑦 } ) )
2 velsn ( 𝑡 ∈ { 𝑦 } ↔ 𝑡 = 𝑦 )
3 2 orbi2i ( ( 𝑡𝑥𝑡 ∈ { 𝑦 } ) ↔ ( 𝑡𝑥𝑡 = 𝑦 ) )
4 1 3 bitri ( 𝑡 ∈ ( 𝑥 ∪ { 𝑦 } ) ↔ ( 𝑡𝑥𝑡 = 𝑦 ) )
5 4 bj-clex ( ( 𝑥 ∪ { 𝑦 } ) ∈ V ↔ ∃ 𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡 = 𝑦 ) ) )