Metamath Proof Explorer


Axiom ax-bj-adj

Description: Axiom of adjunction. (Contributed by BJ, 19-Jan-2025)

Ref Expression
Assertion ax-bj-adj 𝑥𝑦𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡 = 𝑦 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 vy 𝑦
2 vz 𝑧
3 vt 𝑡
4 3 cv 𝑡
5 2 cv 𝑧
6 4 5 wcel 𝑡𝑧
7 0 cv 𝑥
8 4 7 wcel 𝑡𝑥
9 1 cv 𝑦
10 4 9 wceq 𝑡 = 𝑦
11 8 10 wo ( 𝑡𝑥𝑡 = 𝑦 )
12 6 11 wb ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡 = 𝑦 ) )
13 12 3 wal 𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡 = 𝑦 ) )
14 13 2 wex 𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡 = 𝑦 ) )
15 14 1 wal 𝑦𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡 = 𝑦 ) )
16 15 0 wal 𝑥𝑦𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡 = 𝑦 ) )