Description: Axiom of adjunction. (Contributed by BJ, 19-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-bj-adj | ⊢ ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | vx | ⊢ 𝑥 | |
| 1 | vy | ⊢ 𝑦 | |
| 2 | vz | ⊢ 𝑧 | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | 3 | cv | ⊢ 𝑡 | 
| 5 | 2 | cv | ⊢ 𝑧 | 
| 6 | 4 5 | wcel | ⊢ 𝑡 ∈ 𝑧 | 
| 7 | 0 | cv | ⊢ 𝑥 | 
| 8 | 4 7 | wcel | ⊢ 𝑡 ∈ 𝑥 | 
| 9 | 1 | cv | ⊢ 𝑦 | 
| 10 | 4 9 | wceq | ⊢ 𝑡 = 𝑦 | 
| 11 | 8 10 | wo | ⊢ ( 𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦 ) | 
| 12 | 6 11 | wb | ⊢ ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦 ) ) | 
| 13 | 12 3 | wal | ⊢ ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦 ) ) | 
| 14 | 13 2 | wex | ⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦 ) ) | 
| 15 | 14 1 | wal | ⊢ ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦 ) ) | 
| 16 | 15 0 | wal | ⊢ ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦 ) ) |