Metamath Proof Explorer


Theorem bj-prfromadj

Description: Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-prfromadj { 𝑥 , 𝑦 } ∈ V

Proof

Step Hyp Ref Expression
1 df-pr { 𝑥 , 𝑦 } = ( { 𝑥 } ∪ { 𝑦 } )
2 bj-snfromadj { 𝑥 } ∈ V
3 bj-adjg1 ( { 𝑥 } ∈ V → ( { 𝑥 } ∪ { 𝑦 } ) ∈ V )
4 2 3 ax-mp ( { 𝑥 } ∪ { 𝑦 } ) ∈ V
5 1 4 eqeltri { 𝑥 , 𝑦 } ∈ V