Metamath Proof Explorer


Theorem bj-adjfrombun

Description: Adjunction from singleton and binary union. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-adjfrombun ( 𝑥 ∪ { 𝑦 } ) ∈ V

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 bj-snexg ( 𝑦 ∈ V → { 𝑦 } ∈ V )
3 2 elv { 𝑦 } ∈ V
4 bj-unexg ( ( 𝑥 ∈ V ∧ { 𝑦 } ∈ V ) → ( 𝑥 ∪ { 𝑦 } ) ∈ V )
5 1 3 4 mp2an ( 𝑥 ∪ { 𝑦 } ) ∈ V