Description: Adjunction from singleton and binary union. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-adjfrombun | ⊢ ( 𝑥 ∪ { 𝑦 } ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | bj-snexg | ⊢ ( 𝑦 ∈ V → { 𝑦 } ∈ V ) | |
| 3 | 2 | elv | ⊢ { 𝑦 } ∈ V |
| 4 | bj-unexg | ⊢ ( ( 𝑥 ∈ V ∧ { 𝑦 } ∈ V ) → ( 𝑥 ∪ { 𝑦 } ) ∈ V ) | |
| 5 | 1 3 4 | mp2an | ⊢ ( 𝑥 ∪ { 𝑦 } ) ∈ V |