Description: Adjunction from singleton and binary union. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-adjfrombun | ⊢ ( 𝑥 ∪ { 𝑦 } ) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | ⊢ 𝑥 ∈ V | |
2 | bj-snexg | ⊢ ( 𝑦 ∈ V → { 𝑦 } ∈ V ) | |
3 | 2 | elv | ⊢ { 𝑦 } ∈ V |
4 | bj-unexg | ⊢ ( ( 𝑥 ∈ V ∧ { 𝑦 } ∈ V ) → ( 𝑥 ∪ { 𝑦 } ) ∈ V ) | |
5 | 1 3 4 | mp2an | ⊢ ( 𝑥 ∪ { 𝑦 } ) ∈ V |