Step |
Hyp |
Ref |
Expression |
1 |
|
elissetv |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
2 |
|
elissetv |
⊢ ( 𝐵 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐵 ) |
3 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
4 |
|
uneq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) |
5 |
|
ax-bj-bun |
⊢ ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |
6 |
5
|
spi |
⊢ ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |
7 |
6
|
spi |
⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |
8 |
|
bj-axbun |
⊢ ( ( 𝑥 ∪ 𝑦 ) ∈ V ↔ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) ) |
9 |
7 8
|
mpbir |
⊢ ( 𝑥 ∪ 𝑦 ) ∈ V |
10 |
4 9
|
eqeltrrdi |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
11 |
10
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
12 |
11
|
exlimiv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
13 |
3 12
|
sylbir |
⊢ ( ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
14 |
1 2 13
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |