| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elissetv | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 2 |  | elissetv | ⊢ ( 𝐵  ∈  𝑊  →  ∃ 𝑦 𝑦  =  𝐵 ) | 
						
							| 3 |  | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  ∧  ∃ 𝑦 𝑦  =  𝐵 ) ) | 
						
							| 4 |  | uneq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  ∪  𝑦 )  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 5 |  | ax-bj-bun | ⊢ ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  ( 𝑡  ∈  𝑥  ∨  𝑡  ∈  𝑦 ) ) | 
						
							| 6 | 5 | spi | ⊢ ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  ( 𝑡  ∈  𝑥  ∨  𝑡  ∈  𝑦 ) ) | 
						
							| 7 | 6 | spi | ⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  ( 𝑡  ∈  𝑥  ∨  𝑡  ∈  𝑦 ) ) | 
						
							| 8 |  | bj-axbun | ⊢ ( ( 𝑥  ∪  𝑦 )  ∈  V  ↔  ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  ( 𝑡  ∈  𝑥  ∨  𝑡  ∈  𝑦 ) ) ) | 
						
							| 9 | 7 8 | mpbir | ⊢ ( 𝑥  ∪  𝑦 )  ∈  V | 
						
							| 10 | 4 9 | eqeltrrdi | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 13 | 3 12 | sylbir | ⊢ ( ( ∃ 𝑥 𝑥  =  𝐴  ∧  ∃ 𝑦 𝑦  =  𝐵 )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 14 | 1 2 13 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) |