Metamath Proof Explorer


Theorem bj-unexg

Description: Existence of binary unions of sets, proved from ax-bj-bun . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-unexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 elissetv ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
2 elissetv ( 𝐵𝑊 → ∃ 𝑦 𝑦 = 𝐵 )
3 exdistrv ( ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) )
4 uneq12 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥𝑦 ) = ( 𝐴𝐵 ) )
5 ax-bj-bun 𝑥𝑦𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡𝑦 ) )
6 5 spi 𝑦𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡𝑦 ) )
7 6 spi 𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡𝑦 ) )
8 bj-axbun ( ( 𝑥𝑦 ) ∈ V ↔ ∃ 𝑧𝑡 ( 𝑡𝑧 ↔ ( 𝑡𝑥𝑡𝑦 ) ) )
9 7 8 mpbir ( 𝑥𝑦 ) ∈ V
10 4 9 eqeltrrdi ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝐴𝐵 ) ∈ V )
11 10 exlimiv ( ∃ 𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝐴𝐵 ) ∈ V )
12 11 exlimiv ( ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝐴𝐵 ) ∈ V )
13 3 12 sylbir ( ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) → ( 𝐴𝐵 ) ∈ V )
14 1 2 13 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )