Description: Axiom of binary union. (Contributed by BJ, 12-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-bj-bun | ⊢ ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | ⊢ 𝑥 | |
1 | vy | ⊢ 𝑦 | |
2 | vz | ⊢ 𝑧 | |
3 | vt | ⊢ 𝑡 | |
4 | 3 | cv | ⊢ 𝑡 |
5 | 2 | cv | ⊢ 𝑧 |
6 | 4 5 | wcel | ⊢ 𝑡 ∈ 𝑧 |
7 | 0 | cv | ⊢ 𝑥 |
8 | 4 7 | wcel | ⊢ 𝑡 ∈ 𝑥 |
9 | 1 | cv | ⊢ 𝑦 |
10 | 4 9 | wcel | ⊢ 𝑡 ∈ 𝑦 |
11 | 8 10 | wo | ⊢ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) |
12 | 6 11 | wb | ⊢ ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |
13 | 12 3 | wal | ⊢ ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |
14 | 13 2 | wex | ⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |
15 | 14 1 | wal | ⊢ ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |
16 | 15 0 | wal | ⊢ ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ( 𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦 ) ) |