Metamath Proof Explorer


Theorem bj-prexg

Description: Existence of unordered pairs formed on sets, proved from ax-bj-sn and ax-bj-bun . Contrary to bj-prex , this proof is intuitionistically valid and does not require ax-nul . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-prexg ( ( 𝐴𝑉𝐵𝑊 ) → { 𝐴 , 𝐵 } ∈ V )

Proof

Step Hyp Ref Expression
1 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
2 bj-snexg ( 𝐴𝑉 → { 𝐴 } ∈ V )
3 bj-snexg ( 𝐵𝑊 → { 𝐵 } ∈ V )
4 bj-unexg ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ V )
5 2 3 4 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ V )
6 1 5 eqeltrid ( ( 𝐴𝑉𝐵𝑊 ) → { 𝐴 , 𝐵 } ∈ V )