Metamath Proof Explorer
Description: Existence of unordered pairs proved from ax-bj-sn and ax-bj-bun .
(Contributed by BJ, 12-Jan-2025)
(Proof modification is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
bj-prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
2 |
|
bj-snex |
⊢ { 𝐴 } ∈ V |
3 |
|
bj-snex |
⊢ { 𝐵 } ∈ V |
4 |
|
bj-unexg |
⊢ ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ V ) |
5 |
2 3 4
|
mp2an |
⊢ ( { 𝐴 } ∪ { 𝐵 } ) ∈ V |
6 |
1 5
|
eqeltri |
⊢ { 𝐴 , 𝐵 } ∈ V |