Metamath Proof Explorer


Theorem bj-prex

Description: Existence of unordered pairs proved from ax-bj-sn and ax-bj-bun . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-prex { 𝐴 , 𝐵 } ∈ V

Proof

Step Hyp Ref Expression
1 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
2 bj-snex { 𝐴 } ∈ V
3 bj-snex { 𝐵 } ∈ V
4 bj-unexg ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ V )
5 2 3 4 mp2an ( { 𝐴 } ∪ { 𝐵 } ) ∈ V
6 1 5 eqeltri { 𝐴 , 𝐵 } ∈ V