Metamath Proof Explorer
		
		
		
		Description:  Existence of unordered pairs proved from ax-bj-sn and ax-bj-bun .
       (Contributed by BJ, 12-Jan-2025)
       (Proof modification is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | bj-prex | ⊢  { 𝐴 ,  𝐵 }  ∈  V | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-pr | ⊢ { 𝐴 ,  𝐵 }  =  ( { 𝐴 }  ∪  { 𝐵 } ) | 
						
							| 2 |  | bj-snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 3 |  | bj-snex | ⊢ { 𝐵 }  ∈  V | 
						
							| 4 |  | bj-unexg | ⊢ ( ( { 𝐴 }  ∈  V  ∧  { 𝐵 }  ∈  V )  →  ( { 𝐴 }  ∪  { 𝐵 } )  ∈  V ) | 
						
							| 5 | 2 3 4 | mp2an | ⊢ ( { 𝐴 }  ∪  { 𝐵 } )  ∈  V | 
						
							| 6 | 1 5 | eqeltri | ⊢ { 𝐴 ,  𝐵 }  ∈  V |