Metamath Proof Explorer


Theorem bj-prex

Description: Existence of unordered pairs proved from ax-bj-sn and ax-bj-bun . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-prex A B V

Proof

Step Hyp Ref Expression
1 df-pr A B = A B
2 bj-snex A V
3 bj-snex B V
4 bj-unexg A V B V A B V
5 2 3 4 mp2an A B V
6 1 5 eqeltri A B V