Metamath Proof Explorer


Theorem bj-snex

Description: A singleton is a set. See also snex , snexALT . (Contributed by NM, 7-Aug-1994) Prove it from ax-bj-sn . (Revised by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-snex A V

Proof

Step Hyp Ref Expression
1 bj-snexg A V A V
2 snprc ¬ A V A =
3 2 biimpi ¬ A V A =
4 0ex V
5 3 4 eqeltrdi ¬ A V A V
6 1 5 pm2.61i A V