Metamath Proof Explorer
		
		
		
		Description:  Axiom of singleton.  (Contributed by BJ, 12-Jan-2025)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | ax-bj-sn |  | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | vx |  | 
						
							| 1 |  | vy |  | 
						
							| 2 |  | vz |  | 
						
							| 3 | 2 | cv |  | 
						
							| 4 | 1 | cv |  | 
						
							| 5 | 3 4 | wcel |  | 
						
							| 6 | 0 | cv |  | 
						
							| 7 | 3 6 | wceq |  | 
						
							| 8 | 5 7 | wb |  | 
						
							| 9 | 8 2 | wal |  | 
						
							| 10 | 9 1 | wex |  | 
						
							| 11 | 10 0 | wal |  |