Description: Axiom of singleton. (Contributed by BJ, 12-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-bj-sn | |- A. x E. y A. z ( z e. y <-> z = x ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | vx | |- x | |
| 1 | vy | |- y | |
| 2 | vz | |- z | |
| 3 | 2 | cv | |- z | 
| 4 | 1 | cv | |- y | 
| 5 | 3 4 | wcel | |- z e. y | 
| 6 | 0 | cv | |- x | 
| 7 | 3 6 | wceq | |- z = x | 
| 8 | 5 7 | wb | |- ( z e. y <-> z = x ) | 
| 9 | 8 2 | wal | |- A. z ( z e. y <-> z = x ) | 
| 10 | 9 1 | wex | |- E. y A. z ( z e. y <-> z = x ) | 
| 11 | 10 0 | wal | |- A. x E. y A. z ( z e. y <-> z = x ) |