Metamath Proof Explorer


Axiom ax-bj-sn

Description: Axiom of singleton. (Contributed by BJ, 12-Jan-2025)

Ref Expression
Assertion ax-bj-sn
|- A. x E. y A. z ( z e. y <-> z = x )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 vy
 |-  y
2 vz
 |-  z
3 2 cv
 |-  z
4 1 cv
 |-  y
5 3 4 wcel
 |-  z e. y
6 0 cv
 |-  x
7 3 6 wceq
 |-  z = x
8 5 7 wb
 |-  ( z e. y <-> z = x )
9 8 2 wal
 |-  A. z ( z e. y <-> z = x )
10 9 1 wex
 |-  E. y A. z ( z e. y <-> z = x )
11 10 0 wal
 |-  A. x E. y A. z ( z e. y <-> z = x )