Description: Axiom of singleton. (Contributed by BJ, 12-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-bj-sn | |- A. x E. y A. z ( z e. y <-> z = x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | |- x |
|
1 | vy | |- y |
|
2 | vz | |- z |
|
3 | 2 | cv | |- z |
4 | 1 | cv | |- y |
5 | 3 4 | wcel | |- z e. y |
6 | 0 | cv | |- x |
7 | 3 6 | wceq | |- z = x |
8 | 5 7 | wb | |- ( z e. y <-> z = x ) |
9 | 8 2 | wal | |- A. z ( z e. y <-> z = x ) |
10 | 9 1 | wex | |- E. y A. z ( z e. y <-> z = x ) |
11 | 10 0 | wal | |- A. x E. y A. z ( z e. y <-> z = x ) |