Metamath Proof Explorer


Theorem bj-snexg

Description: A singleton built on a set is a set. Contrary to bj-snex , this proof is intuitionistically valid and does not require ax-nul . (Contributed by NM, 7-Aug-1994) Extract it from snex and prove it from ax-bj-sn . (Revised by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-snexg
|- ( A e. V -> { A } e. _V )

Proof

Step Hyp Ref Expression
1 sneq
 |-  ( x = A -> { x } = { A } )
2 ax-bj-sn
 |-  A. x E. y A. z ( z e. y <-> z = x )
3 2 spi
 |-  E. y A. z ( z e. y <-> z = x )
4 bj-axsn
 |-  ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) )
5 3 4 mpbir
 |-  { x } e. _V
6 1 5 eqeltrrdi
 |-  ( x = A -> { A } e. _V )
7 6 vtocleg
 |-  ( A e. V -> { A } e. _V )