Description: A singleton built on a set is a set. Contrary to bj-snex , this proof is intuitionistically valid and does not require ax-nul . (Contributed by NM, 7-Aug-1994) Extract it from snex and prove it from ax-bj-sn . (Revised by BJ, 12-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-snexg | |- ( A e. V -> { A } e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | |- ( x = A -> { x } = { A } ) |
|
2 | ax-bj-sn | |- A. x E. y A. z ( z e. y <-> z = x ) |
|
3 | 2 | spi | |- E. y A. z ( z e. y <-> z = x ) |
4 | bj-axsn | |- ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) ) |
|
5 | 3 4 | mpbir | |- { x } e. _V |
6 | 1 5 | eqeltrrdi | |- ( x = A -> { A } e. _V ) |
7 | 6 | vtocleg | |- ( A e. V -> { A } e. _V ) |