Description: A singleton built on a set is a set. Contrary to bj-snex , this proof is intuitionistically valid and does not require ax-nul . (Contributed by NM, 7-Aug-1994) Extract it from snex and prove it from ax-bj-sn . (Revised by BJ, 12-Jan-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-snexg | |- ( A e. V -> { A } e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneq |  |-  ( x = A -> { x } = { A } ) | |
| 2 | ax-bj-sn | |- A. x E. y A. z ( z e. y <-> z = x ) | |
| 3 | 2 | spi | |- E. y A. z ( z e. y <-> z = x ) | 
| 4 | bj-axsn |  |-  ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) ) | |
| 5 | 3 4 | mpbir |  |-  { x } e. _V | 
| 6 | 1 5 | eqeltrrdi |  |-  ( x = A -> { A } e. _V ) | 
| 7 | 6 | vtocleg |  |-  ( A e. V -> { A } e. _V ) |