Metamath Proof Explorer


Theorem bj-snexg

Description: A singleton built on a set is a set. Contrary to bj-snex , this proof is intuitionistically valid and does not require ax-nul . (Contributed by NM, 7-Aug-1994) Extract it from snex and prove it from ax-bj-sn . (Revised by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-snexg ( 𝐴𝑉 → { 𝐴 } ∈ V )

Proof

Step Hyp Ref Expression
1 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
2 ax-bj-sn 𝑥𝑦𝑧 ( 𝑧𝑦𝑧 = 𝑥 )
3 2 spi 𝑦𝑧 ( 𝑧𝑦𝑧 = 𝑥 )
4 bj-axsn ( { 𝑥 } ∈ V ↔ ∃ 𝑦𝑧 ( 𝑧𝑦𝑧 = 𝑥 ) )
5 3 4 mpbir { 𝑥 } ∈ V
6 1 5 eqeltrrdi ( 𝑥 = 𝐴 → { 𝐴 } ∈ V )
7 6 vtocleg ( 𝐴𝑉 → { 𝐴 } ∈ V )