Metamath Proof Explorer


Axiom ax-bj-sn

Description: Axiom of singleton. (Contributed by BJ, 12-Jan-2025)

Ref Expression
Assertion ax-bj-sn 𝑥𝑦𝑧 ( 𝑧𝑦𝑧 = 𝑥 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 vy 𝑦
2 vz 𝑧
3 2 cv 𝑧
4 1 cv 𝑦
5 3 4 wcel 𝑧𝑦
6 0 cv 𝑥
7 3 6 wceq 𝑧 = 𝑥
8 5 7 wb ( 𝑧𝑦𝑧 = 𝑥 )
9 8 2 wal 𝑧 ( 𝑧𝑦𝑧 = 𝑥 )
10 9 1 wex 𝑦𝑧 ( 𝑧𝑦𝑧 = 𝑥 )
11 10 0 wal 𝑥𝑦𝑧 ( 𝑧𝑦𝑧 = 𝑥 )