Metamath Proof Explorer
		
		
		
		Description:  Axiom of singleton.  (Contributed by BJ, 12-Jan-2025)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | ax-bj-sn | ⊢  ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  𝑧  =  𝑥 ) | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | vx | ⊢ 𝑥 | 
						
							| 1 |  | vy | ⊢ 𝑦 | 
						
							| 2 |  | vz | ⊢ 𝑧 | 
						
							| 3 | 2 | cv | ⊢ 𝑧 | 
						
							| 4 | 1 | cv | ⊢ 𝑦 | 
						
							| 5 | 3 4 | wcel | ⊢ 𝑧  ∈  𝑦 | 
						
							| 6 | 0 | cv | ⊢ 𝑥 | 
						
							| 7 | 3 6 | wceq | ⊢ 𝑧  =  𝑥 | 
						
							| 8 | 5 7 | wb | ⊢ ( 𝑧  ∈  𝑦  ↔  𝑧  =  𝑥 ) | 
						
							| 9 | 8 2 | wal | ⊢ ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  𝑧  =  𝑥 ) | 
						
							| 10 | 9 1 | wex | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  𝑧  =  𝑥 ) | 
						
							| 11 | 10 0 | wal | ⊢ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  𝑧  =  𝑥 ) |