Metamath Proof Explorer
Description: Axiom of singleton. (Contributed by BJ, 12-Jan-2025)
|
|
Ref |
Expression |
|
Assertion |
ax-bj-sn |
⊢ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥 ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
vx |
⊢ 𝑥 |
1 |
|
vy |
⊢ 𝑦 |
2 |
|
vz |
⊢ 𝑧 |
3 |
2
|
cv |
⊢ 𝑧 |
4 |
1
|
cv |
⊢ 𝑦 |
5 |
3 4
|
wcel |
⊢ 𝑧 ∈ 𝑦 |
6 |
0
|
cv |
⊢ 𝑥 |
7 |
3 6
|
wceq |
⊢ 𝑧 = 𝑥 |
8 |
5 7
|
wb |
⊢ ( 𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥 ) |
9 |
8 2
|
wal |
⊢ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥 ) |
10 |
9 1
|
wex |
⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥 ) |
11 |
10 0
|
wal |
⊢ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥 ) |