Metamath Proof Explorer


Theorem bj-snex

Description: A singleton is a set. See also snex , snexALT . (Contributed by NM, 7-Aug-1994) Prove it from ax-bj-sn . (Revised by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-snex { 𝐴 } ∈ V

Proof

Step Hyp Ref Expression
1 bj-snexg ( 𝐴 ∈ V → { 𝐴 } ∈ V )
2 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
3 2 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
4 0ex ∅ ∈ V
5 3 4 eqeltrdi ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ V )
6 1 5 pm2.61i { 𝐴 } ∈ V