Metamath Proof Explorer


Theorem bj-snex

Description: A singleton is a set. See also snex , snexALT . (Contributed by NM, 7-Aug-1994) Prove it from ax-bj-sn . (Revised by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-snex
|- { A } e. _V

Proof

Step Hyp Ref Expression
1 bj-snexg
 |-  ( A e. _V -> { A } e. _V )
2 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
3 2 biimpi
 |-  ( -. A e. _V -> { A } = (/) )
4 0ex
 |-  (/) e. _V
5 3 4 eqeltrdi
 |-  ( -. A e. _V -> { A } e. _V )
6 1 5 pm2.61i
 |-  { A } e. _V