Description: A singleton is a set. See also snex , snexALT . (Contributed by NM, 7-Aug-1994) Prove it from ax-bj-sn . (Revised by BJ, 12-Jan-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-snex | |- { A } e. _V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-snexg |  |-  ( A e. _V -> { A } e. _V ) | |
| 2 | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | |
| 3 | 2 | biimpi |  |-  ( -. A e. _V -> { A } = (/) ) | 
| 4 | 0ex | |- (/) e. _V | |
| 5 | 3 4 | eqeltrdi |  |-  ( -. A e. _V -> { A } e. _V ) | 
| 6 | 1 5 | pm2.61i |  |-  { A } e. _V |