Description: Two ways of stating the axiom of binary union (which is the universal closure of either side, see ax-bj-bun ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-axbun | |- ( ( x u. y ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t e. y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun | |- ( t e. ( x u. y ) <-> ( t e. x \/ t e. y ) ) |
|
2 | 1 | bj-clex | |- ( ( x u. y ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t e. y ) ) ) |