Metamath Proof Explorer


Theorem bj-axbun

Description: Two ways of stating the axiom of binary union (which is the universal closure of either side, see ax-bj-bun ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axbun
|- ( ( x u. y ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t e. y ) ) )

Proof

Step Hyp Ref Expression
1 elun
 |-  ( t e. ( x u. y ) <-> ( t e. x \/ t e. y ) )
2 1 bj-clex
 |-  ( ( x u. y ) e. _V <-> E. z A. t ( t e. z <-> ( t e. x \/ t e. y ) ) )