Metamath Proof Explorer


Theorem bj-axbun

Description: Two ways of stating the axiom of binary union (which is the universal closure of either side, see ax-bj-bun ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axbun x y V z t t z t x t y

Proof

Step Hyp Ref Expression
1 elun t x y t x t y
2 1 bj-clex x y V z t t z t x t y