Metamath Proof Explorer


Theorem bj-axsn

Description: Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axsn
|- ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) )

Proof

Step Hyp Ref Expression
1 velsn
 |-  ( z e. { x } <-> z = x )
2 1 bj-clex
 |-  ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) )