Description: Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-axsn | |- ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | velsn |  |-  ( z e. { x } <-> z = x ) | |
| 2 | 1 | bj-clex |  |-  ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) ) |