Description: Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn ). (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-axsn | |- ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn | |- ( z e. { x } <-> z = x ) |
|
2 | 1 | bj-clex | |- ( { x } e. _V <-> E. y A. z ( z e. y <-> z = x ) ) |