Metamath Proof Explorer


Theorem snexALT

Description: Alternate proof of snex using Power Set ( ax-pow ) instead of Pairing ( ax-pr ). Unlike in the proof of zfpair , Replacement ( ax-rep ) is not needed. (Contributed by NM, 7-Aug-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snexALT AV

Proof

Step Hyp Ref Expression
1 snsspw A𝒫A
2 ssexg A𝒫A𝒫AVAV
3 1 2 mpan 𝒫AVAV
4 pwexg AV𝒫AV
5 4 con3i ¬𝒫AV¬AV
6 snprc ¬AVA=
7 6 biimpi ¬AVA=
8 0ex V
9 7 8 eqeltrdi ¬AVAV
10 5 9 syl ¬𝒫AVAV
11 3 10 pm2.61i AV