Metamath Proof Explorer


Theorem bj-prex

Description: Existence of unordered pairs proved from ax-bj-sn and ax-bj-bun . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-prex
|- { A , B } e. _V

Proof

Step Hyp Ref Expression
1 df-pr
 |-  { A , B } = ( { A } u. { B } )
2 bj-snex
 |-  { A } e. _V
3 bj-snex
 |-  { B } e. _V
4 bj-unexg
 |-  ( ( { A } e. _V /\ { B } e. _V ) -> ( { A } u. { B } ) e. _V )
5 2 3 4 mp2an
 |-  ( { A } u. { B } ) e. _V
6 1 5 eqeltri
 |-  { A , B } e. _V