Metamath Proof Explorer


Theorem bj-prexg

Description: Existence of unordered pairs formed on sets, proved from ax-bj-sn and ax-bj-bun . Contrary to bj-prex , this proof is intuitionistically valid and does not require ax-nul . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-prexg
|- ( ( A e. V /\ B e. W ) -> { A , B } e. _V )

Proof

Step Hyp Ref Expression
1 df-pr
 |-  { A , B } = ( { A } u. { B } )
2 bj-snexg
 |-  ( A e. V -> { A } e. _V )
3 bj-snexg
 |-  ( B e. W -> { B } e. _V )
4 bj-unexg
 |-  ( ( { A } e. _V /\ { B } e. _V ) -> ( { A } u. { B } ) e. _V )
5 2 3 4 syl2an
 |-  ( ( A e. V /\ B e. W ) -> ( { A } u. { B } ) e. _V )
6 1 5 eqeltrid
 |-  ( ( A e. V /\ B e. W ) -> { A , B } e. _V )