Description: Existence of unordered pairs formed on sets, proved from ax-bj-sn and ax-bj-bun . Contrary to bj-prex , this proof is intuitionistically valid and does not require ax-nul . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-prexg | |- ( ( A e. V /\ B e. W ) -> { A , B } e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pr |  |-  { A , B } = ( { A } u. { B } ) | |
| 2 | bj-snexg |  |-  ( A e. V -> { A } e. _V ) | |
| 3 | bj-snexg |  |-  ( B e. W -> { B } e. _V ) | |
| 4 | bj-unexg |  |-  ( ( { A } e. _V /\ { B } e. _V ) -> ( { A } u. { B } ) e. _V ) | |
| 5 | 2 3 4 | syl2an |  |-  ( ( A e. V /\ B e. W ) -> ( { A } u. { B } ) e. _V ) | 
| 6 | 1 5 | eqeltrid |  |-  ( ( A e. V /\ B e. W ) -> { A , B } e. _V ) |