Description: Existence of unordered pairs formed on sets, proved from ax-bj-sn and ax-bj-bun . Contrary to bj-prex , this proof is intuitionistically valid and does not require ax-nul . (Contributed by BJ, 12-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-prexg | |- ( ( A e. V /\ B e. W ) -> { A , B } e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
2 | bj-snexg | |- ( A e. V -> { A } e. _V ) |
|
3 | bj-snexg | |- ( B e. W -> { B } e. _V ) |
|
4 | bj-unexg | |- ( ( { A } e. _V /\ { B } e. _V ) -> ( { A } u. { B } ) e. _V ) |
|
5 | 2 3 4 | syl2an | |- ( ( A e. V /\ B e. W ) -> ( { A } u. { B } ) e. _V ) |
6 | 1 5 | eqeltrid | |- ( ( A e. V /\ B e. W ) -> { A , B } e. _V ) |