Description: Adjunction from singleton and binary union. (Contributed by BJ, 19-Jan-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-adjfrombun | |- ( x u. { y } ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | bj-snexg | |- ( y e. _V -> { y } e. _V ) |
|
| 3 | 2 | elv | |- { y } e. _V |
| 4 | bj-unexg | |- ( ( x e. _V /\ { y } e. _V ) -> ( x u. { y } ) e. _V ) |
|
| 5 | 1 3 4 | mp2an | |- ( x u. { y } ) e. _V |