Metamath Proof Explorer


Axiom ax-distr

Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, justified by Theorem axdistr . Proofs should normally use adddi instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994)

Ref Expression
Assertion ax-distr ABCAB+C=AB+AC

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cc class
2 0 1 wcel wffA
3 cB classB
4 3 1 wcel wffB
5 cC classC
6 5 1 wcel wffC
7 2 4 6 w3a wffABC
8 cmul class×
9 caddc class+
10 3 5 9 co classB+C
11 0 10 8 co classAB+C
12 0 3 8 co classAB
13 0 5 8 co classAC
14 12 13 9 co classAB+AC
15 11 14 wceq wffAB+C=AB+AC
16 7 15 wi wffABCAB+C=AB+AC