Metamath Proof Explorer


Axiom ax-hvdistr1

Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvdistr1 ABCAB+C=AB+AC

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cc class
2 0 1 wcel wffA
3 cB classB
4 chba class
5 3 4 wcel wffB
6 cC classC
7 6 4 wcel wffC
8 2 5 7 w3a wffABC
9 csm class
10 cva class+
11 3 6 10 co classB+C
12 0 11 9 co classAB+C
13 0 3 9 co classAB
14 0 6 9 co classAC
15 13 14 10 co classAB+AC
16 12 15 wceq wffAB+C=AB+AC
17 8 16 wi wffABCAB+C=AB+AC