Metamath Proof Explorer


Axiom ax-hvdistr2

Description: Scalar multiplication distributive law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvdistr2 ABCA+BC=AC+BC

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cc class
2 0 1 wcel wffA
3 cB classB
4 3 1 wcel wffB
5 cC classC
6 chba class
7 5 6 wcel wffC
8 2 4 7 w3a wffABC
9 caddc class+
10 0 3 9 co classA+B
11 csm class
12 10 5 11 co classA+BC
13 0 5 11 co classAC
14 cva class+
15 3 5 11 co classBC
16 13 15 14 co classAC+BC
17 12 16 wceq wffA+BC=AC+BC
18 8 17 wi wffABCA+BC=AC+BC