Metamath Proof Explorer


Axiom ax-rnegex

Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, justified by Theorem axrnegex . (Contributed by Eric Schmidt, 21-May-2007)

Ref Expression
Assertion ax-rnegex AxA+x=0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cr class
2 0 1 wcel wffA
3 vx setvarx
4 caddc class+
5 3 cv setvarx
6 0 5 4 co classA+x
7 cc0 class0
8 6 7 wceq wffA+x=0
9 8 3 1 wrex wffxA+x=0
10 2 9 wi wffAxA+x=0