Metamath Proof Explorer


Theorem ax12v2

Description: It is possible to remove any restriction on ph in ax12v . Same as Axiom C8 of Monk2 p. 105. Use ax12v instead when sufficient. (Contributed by NM, 5-Aug-1993) Remove dependencies on ax-10 and ax-13 . (Revised by Jim Kingdon, 15-Dec-2017) (Proof shortened by Wolf Lammen, 8-Dec-2019)

Ref Expression
Assertion ax12v2 x = y φ x x = y φ

Proof

Step Hyp Ref Expression
1 equtrr y = z x = y x = z
2 ax12v x = z φ x x = z φ
3 1 imim1d y = z x = z φ x = y φ
4 3 alimdv y = z x x = z φ x x = y φ
5 2 4 syl9r y = z x = z φ x x = y φ
6 1 5 syld y = z x = y φ x x = y φ
7 ax6evr z y = z
8 6 7 exlimiiv x = y φ x x = y φ