Metamath Proof Explorer


Theorem ax6vsep

Description: Derive ax6v (a weakened version of ax-6 where x and y must be distinct), from Separation ax-sep and Extensionality ax-ext . See ax6 for the derivation of ax-6 from ax6v . (Contributed by NM, 12-Nov-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax6vsep ¬x¬x=y

Proof

Step Hyp Ref Expression
1 ax-sep xzzxzyz=zz=z
2 id z=zz=z
3 2 biantru zyzyz=zz=z
4 3 bibi2i zxzyzxzyz=zz=z
5 4 biimpri zxzyz=zz=zzxzy
6 5 alimi zzxzyz=zz=zzzxzy
7 ax-ext zzxzyx=y
8 6 7 syl zzxzyz=zz=zx=y
9 8 eximi xzzxzyz=zz=zxx=y
10 1 9 ax-mp xx=y
11 df-ex xx=y¬x¬x=y
12 10 11 mpbi ¬x¬x=y