Metamath Proof Explorer


Theorem axc16gb

Description: Biconditional strengthening of axc16g . (Contributed by NM, 15-May-1993)

Ref Expression
Assertion axc16gb xx=yφzφ

Proof

Step Hyp Ref Expression
1 axc16g xx=yφzφ
2 sp zφφ
3 1 2 impbid1 xx=yφzφ