Metamath Proof Explorer


Theorem axc5c4c711toc4

Description: Rederivation of axc4 from axc5c4c711 . Note that only propositional calculus is required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c4c711toc4 x x φ ψ x φ x ψ

Proof

Step Hyp Ref Expression
1 ax-1 x x φ ψ φ x x φ ψ
2 ax-1 φ x x φ ψ x x ¬ x x x φ ψ φ x x φ ψ
3 axc5c4c711 x x ¬ x x x φ ψ φ x x φ ψ x φ x ψ
4 1 2 3 3syl x x φ ψ x φ x ψ