Metamath Proof Explorer


Theorem axc5c4c711toc7

Description: Rederivation of axc7 from axc5c4c711 . Note that neither axc7 nor ax-11 are required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c4c711toc7 ¬x¬xφφ

Proof

Step Hyp Ref Expression
1 ax-1 φxφφφ
2 1 alimi xφxxφφφ
3 2 axc4i xφxxxφφφ
4 3 con3i ¬xxxφφφ¬xφ
5 4 alimi x¬xxxφφφx¬xφ
6 5 sps xx¬xxxφφφx¬xφ
7 6 con3i ¬x¬xφ¬xx¬xxxφφφ
8 pm2.21 ¬xx¬xxxφφφxx¬xxxφφφφφxxφφφ
9 axc5c4c711 xx¬xxxφφφφφxxφφφxφφxφ
10 8 9 syl ¬xx¬xxxφφφxφφxφ
11 sp xφφ
12 10 11 syl6 ¬xx¬xxxφφφxφφφ
13 pm2.27 xφφxφφφφ
14 id φφ
15 13 14 mpg xφφφφ
16 7 12 15 3syl ¬x¬xφφ