Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1 |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
2 |
1
|
alimi |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
3 |
2
|
axc4i |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
4 |
3
|
con3i |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → ¬ ∀ 𝑥 𝜑 ) |
5 |
4
|
alimi |
⊢ ( ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 ) |
6 |
5
|
sps |
⊢ ( ∀ 𝑥 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 ) |
7 |
6
|
con3i |
⊢ ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ¬ ∀ 𝑥 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
8 |
|
pm2.21 |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ∀ 𝑥 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → 𝜑 ) → ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) ) ) ) |
9 |
|
axc5c4c711 |
⊢ ( ( ∀ 𝑥 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → 𝜑 ) → ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → ∀ 𝑥 𝜑 ) ) |
10 |
8 9
|
syl |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → ∀ 𝑥 𝜑 ) ) |
11 |
|
sp |
⊢ ( ∀ 𝑥 𝜑 → 𝜑 ) |
12 |
10 11
|
syl6 |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
13 |
|
pm2.27 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → ( ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → 𝜑 ) ) |
14 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
15 |
13 14
|
mpg |
⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝜑 ) → 𝜑 ) → 𝜑 ) |
16 |
7 12 15
|
3syl |
⊢ ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → 𝜑 ) |