| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1 | ⊢ ( 𝜑  →  ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 𝜑  →  ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 3 | 2 | axc4i | ⊢ ( ∀ 𝑥 𝜑  →  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 4 | 3 | con3i | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ¬  ∀ 𝑥 𝜑 ) | 
						
							| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑥 ¬  ∀ 𝑥 𝜑 ) | 
						
							| 6 | 5 | sps | ⊢ ( ∀ 𝑥 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑥 ¬  ∀ 𝑥 𝜑 ) | 
						
							| 7 | 6 | con3i | ⊢ ( ¬  ∀ 𝑥 ¬  ∀ 𝑥 𝜑  →  ¬  ∀ 𝑥 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 8 |  | pm2.21 | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ∀ 𝑥 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ( 𝜑  →  𝜑 )  →  ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 ) ) ) ) | 
						
							| 9 |  | axc5c4c711 | ⊢ ( ( ∀ 𝑥 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ( 𝜑  →  𝜑 )  →  ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 ) ) )  →  ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 11 |  | sp | ⊢ ( ∀ 𝑥 𝜑  →  𝜑 ) | 
						
							| 12 | 10 11 | syl6 | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 13 |  | pm2.27 | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  ( ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  𝜑 ) ) | 
						
							| 14 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 15 | 13 14 | mpg | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  𝜑 )  →  𝜑 )  →  𝜑 ) | 
						
							| 16 | 7 12 15 | 3syl | ⊢ ( ¬  ∀ 𝑥 ¬  ∀ 𝑥 𝜑  →  𝜑 ) |