| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1 |
⊢ ( 𝜑 → ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 2 |
1
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 3 |
|
axc5c4c711toc7 |
⊢ ( ¬ ∀ 𝑦 ¬ ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 4 |
3
|
con4i |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑦 ¬ ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 5 |
|
pm2.21 |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → 𝜑 ) → ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) ) ) |
| 6 |
|
axc5c4c711 |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → 𝜑 ) → ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) ) → ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → ∀ 𝑦 𝜑 ) ) |
| 7 |
|
sp |
⊢ ( ∀ 𝑦 𝜑 → 𝜑 ) |
| 8 |
6 7
|
syl6 |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → 𝜑 ) → ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) ) → ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 9 |
5 8
|
syl |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 10 |
9
|
alimi |
⊢ ( ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 11 |
|
axc5c4c711toc7 |
⊢ ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 12 |
10 11
|
nsyl4 |
⊢ ( ¬ ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 13 |
12
|
alimi |
⊢ ( ∀ 𝑦 ¬ ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑦 ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 14 |
4 13
|
syl |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑦 ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 15 |
|
pm2.27 |
⊢ ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → ( ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → 𝜑 ) ) |
| 16 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 17 |
15 16
|
mpg |
⊢ ( ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → 𝜑 ) |
| 18 |
17
|
2alimi |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝜑 ) → 𝜑 ) → ∀ 𝑦 ∀ 𝑥 𝜑 ) |
| 19 |
2 14 18
|
3syl |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) |