Metamath Proof Explorer


Theorem axc5c4c711to11

Description: Rederivation of ax-11 from axc5c4c711 . Note that ax-11 is not required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c4c711to11 ( ∀ 𝑥𝑦 𝜑 → ∀ 𝑦𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝜑 → ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
2 1 2alimi ( ∀ 𝑥𝑦 𝜑 → ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
3 axc5c4c711toc7 ( ¬ ∀ 𝑦 ¬ ∀ 𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
4 3 con4i ( ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ∀ 𝑦 ¬ ∀ 𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
5 pm2.21 ( ¬ ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ( ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ( ( 𝜑𝜑 ) → ∀ 𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) ) ) )
6 axc5c4c711 ( ( ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ( ( 𝜑𝜑 ) → ∀ 𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) ) ) → ( ∀ 𝑦 ( 𝜑𝜑 ) → ∀ 𝑦 𝜑 ) )
7 sp ( ∀ 𝑦 𝜑𝜑 )
8 6 7 syl6 ( ( ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ( ( 𝜑𝜑 ) → ∀ 𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) ) ) → ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
9 5 8 syl ( ¬ ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
10 9 alimi ( ∀ 𝑥 ¬ ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ∀ 𝑥 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
11 axc5c4c711toc7 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ∀ 𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
12 10 11 nsyl4 ( ¬ ∀ 𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ∀ 𝑥 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
13 12 alimi ( ∀ 𝑦 ¬ ∀ 𝑦 ¬ ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ∀ 𝑦𝑥 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
14 4 13 syl ( ∀ 𝑥𝑦 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ∀ 𝑦𝑥 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) )
15 pm2.27 ( ∀ 𝑦 ( 𝜑𝜑 ) → ( ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → 𝜑 ) )
16 id ( 𝜑𝜑 )
17 15 16 mpg ( ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → 𝜑 )
18 17 2alimi ( ∀ 𝑦𝑥 ( ∀ 𝑦 ( 𝜑𝜑 ) → 𝜑 ) → ∀ 𝑦𝑥 𝜑 )
19 2 14 18 3syl ( ∀ 𝑥𝑦 𝜑 → ∀ 𝑦𝑥 𝜑 )