| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1 | ⊢ ( 𝜑  →  ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 2 | 1 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 3 |  | axc5c4c711toc7 | ⊢ ( ¬  ∀ 𝑦 ¬  ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 4 | 3 | con4i | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑦 ¬  ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 5 |  | pm2.21 | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ( 𝜑  →  𝜑 )  →  ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) ) ) | 
						
							| 6 |  | axc5c4c711 | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ( 𝜑  →  𝜑 )  →  ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) )  →  ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  ∀ 𝑦 𝜑 ) ) | 
						
							| 7 |  | sp | ⊢ ( ∀ 𝑦 𝜑  →  𝜑 ) | 
						
							| 8 | 6 7 | syl6 | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ( 𝜑  →  𝜑 )  →  ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) )  →  ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 9 | 5 8 | syl | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 10 | 9 | alimi | ⊢ ( ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑥 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 11 |  | axc5c4c711toc7 | ⊢ ( ¬  ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 12 | 10 11 | nsyl4 | ⊢ ( ¬  ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑥 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 13 | 12 | alimi | ⊢ ( ∀ 𝑦 ¬  ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑦 ∀ 𝑥 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 14 | 4 13 | syl | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑦 ∀ 𝑥 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 ) ) | 
						
							| 15 |  | pm2.27 | ⊢ ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  ( ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  𝜑 ) ) | 
						
							| 16 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 17 | 15 16 | mpg | ⊢ ( ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  𝜑 ) | 
						
							| 18 | 17 | 2alimi | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( ∀ 𝑦 ( 𝜑  →  𝜑 )  →  𝜑 )  →  ∀ 𝑦 ∀ 𝑥 𝜑 ) | 
						
							| 19 | 2 14 18 | 3syl | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ∀ 𝑦 ∀ 𝑥 𝜑 ) |