| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axc4 |
⊢ ( ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 2 |
|
hbn1 |
⊢ ( ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑦 ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
| 3 |
|
axc7 |
⊢ ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
| 4 |
3
|
con1i |
⊢ ( ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
| 5 |
2 4
|
alrimih |
⊢ ( ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑦 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
| 6 |
|
ax-11 |
⊢ ( ∀ 𝑦 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
| 7 |
5 6
|
syl |
⊢ ( ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
| 8 |
1 7
|
nsyl4 |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 9 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 10 |
9
|
spsd |
⊢ ( ¬ 𝜑 → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 11 |
10 1
|
ja |
⊢ ( ( 𝜑 → ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 12 |
8 11
|
ja |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ( 𝜑 → ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) ) → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |