Step |
Hyp |
Ref |
Expression |
1 |
|
axc4 |
⊢ ( ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |
2 |
|
hbn1 |
⊢ ( ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑦 ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
3 |
|
axc7 |
⊢ ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
4 |
3
|
con1i |
⊢ ( ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
5 |
2 4
|
alrimih |
⊢ ( ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑦 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
6 |
|
ax-11 |
⊢ ( ∀ 𝑦 ∀ 𝑥 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
7 |
5 6
|
syl |
⊢ ( ¬ ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) |
8 |
1 7
|
nsyl4 |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |
9 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → ∀ 𝑦 𝜓 ) ) |
10 |
9
|
spsd |
⊢ ( ¬ 𝜑 → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |
11 |
10 1
|
ja |
⊢ ( ( 𝜑 → ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |
12 |
8 11
|
ja |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ¬ ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) → ( 𝜑 → ∀ 𝑦 ( ∀ 𝑦 𝜑 → 𝜓 ) ) ) → ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) ) |