| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axc4 | ⊢ ( ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ( ∀ 𝑦 𝜑  →  ∀ 𝑦 𝜓 ) ) | 
						
							| 2 |  | hbn1 | ⊢ ( ¬  ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ∀ 𝑦 ¬  ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 3 |  | axc7 | ⊢ ( ¬  ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 4 | 3 | con1i | ⊢ ( ¬  ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 5 | 2 4 | alrimih | ⊢ ( ¬  ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ∀ 𝑦 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 6 |  | ax-11 | ⊢ ( ∀ 𝑦 ∀ 𝑥 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ¬  ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 8 | 1 7 | nsyl4 | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ( ∀ 𝑦 𝜑  →  ∀ 𝑦 𝜓 ) ) | 
						
							| 9 |  | pm2.21 | ⊢ ( ¬  𝜑  →  ( 𝜑  →  ∀ 𝑦 𝜓 ) ) | 
						
							| 10 | 9 | spsd | ⊢ ( ¬  𝜑  →  ( ∀ 𝑦 𝜑  →  ∀ 𝑦 𝜓 ) ) | 
						
							| 11 | 10 1 | ja | ⊢ ( ( 𝜑  →  ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 ) )  →  ( ∀ 𝑦 𝜑  →  ∀ 𝑦 𝜓 ) ) | 
						
							| 12 | 8 11 | ja | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ¬  ∀ 𝑥 ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 )  →  ( 𝜑  →  ∀ 𝑦 ( ∀ 𝑦 𝜑  →  𝜓 ) ) )  →  ( ∀ 𝑦 𝜑  →  ∀ 𝑦 𝜓 ) ) |