| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-ext | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  𝑥  =  𝑧 ) | 
						
							| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 3 |  | ax-11 | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑤 ∀ 𝑥 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 4 |  | ax9 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑤  ∈  𝑥  →  𝑤  ∈  𝑧 ) ) | 
						
							| 5 |  | biimpr | ⊢ ( ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 ) ) | 
						
							| 6 | 5 | alimi | ⊢ ( ∀ 𝑥 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑥 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 ) ) | 
						
							| 7 |  | stdpc5v | ⊢ ( ∀ 𝑥 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 )  →  ( 𝑤  ∈  𝑧  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ∀ 𝑥 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ( 𝑤  ∈  𝑧  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) | 
						
							| 9 | 4 8 | syl9 | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑥 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) ) | 
						
							| 10 | 9 | alimdv | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑤 ∀ 𝑥 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) ) | 
						
							| 11 | 3 10 | syl5 | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) ) | 
						
							| 12 | 11 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) ) | 
						
							| 13 | 2 12 | mpcom | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) | 
						
							| 14 | 13 | axc4i | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) | 
						
							| 15 |  | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑤  ∈  𝑥 | 
						
							| 16 | 15 | 19.23 | ⊢ ( ∀ 𝑥 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 )  ↔  ( ∃ 𝑥 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 ) ) | 
						
							| 17 |  | 19.8a | ⊢ ( 𝑤  ∈  𝑧  →  ∃ 𝑧 𝑤  ∈  𝑧 ) | 
						
							| 18 |  | elequ2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 19 | 18 | cbvexvw | ⊢ ( ∃ 𝑧 𝑤  ∈  𝑧  ↔  ∃ 𝑥 𝑤  ∈  𝑥 ) | 
						
							| 20 | 17 19 | sylib | ⊢ ( 𝑤  ∈  𝑧  →  ∃ 𝑥 𝑤  ∈  𝑥 ) | 
						
							| 21 | 4 | cbvalivw | ⊢ ( ∀ 𝑥 𝑤  ∈  𝑥  →  ∀ 𝑧 𝑤  ∈  𝑧 ) | 
						
							| 22 | 20 21 | imim12i | ⊢ ( ( ∃ 𝑥 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 )  →  ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 ) ) | 
						
							| 23 | 16 22 | sylbi | ⊢ ( ∀ 𝑥 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 )  →  ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 ) ) | 
						
							| 24 | 23 | alimi | ⊢ ( ∀ 𝑤 ∀ 𝑥 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 ) ) | 
						
							| 25 | 24 | alcoms | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 ) ) | 
						
							| 26 | 25 | alrimiv | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∀ 𝑥 𝑤  ∈  𝑥 )  →  ∀ 𝑧 ∀ 𝑤 ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 ) ) | 
						
							| 27 |  | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 𝑤  ∈  𝑧 | 
						
							| 28 | 27 | 19.23 | ⊢ ( ∀ 𝑧 ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 )  ↔  ( ∃ 𝑧 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 ) ) | 
						
							| 29 |  | ax9 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 ) ) | 
						
							| 30 | 29 | spimvw | ⊢ ( ∀ 𝑧 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 ) | 
						
							| 31 | 17 30 | imim12i | ⊢ ( ( ∃ 𝑧 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 )  →  ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 ) ) | 
						
							| 32 |  | 19.8a | ⊢ ( 𝑤  ∈  𝑥  →  ∃ 𝑥 𝑤  ∈  𝑥 ) | 
						
							| 33 |  | elequ2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 34 | 33 | cbvexvw | ⊢ ( ∃ 𝑥 𝑤  ∈  𝑥  ↔  ∃ 𝑧 𝑤  ∈  𝑧 ) | 
						
							| 35 | 32 34 | sylib | ⊢ ( 𝑤  ∈  𝑥  →  ∃ 𝑧 𝑤  ∈  𝑧 ) | 
						
							| 36 |  | sp | ⊢ ( ∀ 𝑧 𝑤  ∈  𝑧  →  𝑤  ∈  𝑧 ) | 
						
							| 37 | 35 36 | imim12i | ⊢ ( ( ∃ 𝑧 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 )  →  ( 𝑤  ∈  𝑥  →  𝑤  ∈  𝑧 ) ) | 
						
							| 38 | 31 37 | impbid | ⊢ ( ( ∃ 𝑧 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 )  →  ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 39 | 28 38 | sylbi | ⊢ ( ∀ 𝑧 ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 )  →  ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 40 | 39 | alimi | ⊢ ( ∀ 𝑤 ∀ 𝑧 ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 41 | 40 | alcoms | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 42 | 41 | axc4i | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑤  ∈  𝑧  →  ∀ 𝑧 𝑤  ∈  𝑧 )  →  ∀ 𝑧 ∀ 𝑤 ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 43 | 14 26 42 | 3syl | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 )  →  ∀ 𝑧 ∀ 𝑤 ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 44 |  | axextb | ⊢ ( 𝑥  =  𝑧  ↔  ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 45 | 44 | albii | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  ↔  ∀ 𝑥 ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 46 |  | axextb | ⊢ ( 𝑧  =  𝑥  ↔  ∀ 𝑤 ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 47 | 46 | albii | ⊢ ( ∀ 𝑧 𝑧  =  𝑥  ↔  ∀ 𝑧 ∀ 𝑤 ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 48 | 43 45 47 | 3imtr4i | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∀ 𝑧 𝑧  =  𝑥 ) |