| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-ext |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → 𝑥 = 𝑧 ) |
| 2 |
1
|
alimi |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑥 𝑥 = 𝑧 ) |
| 3 |
|
ax-11 |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ∀ 𝑥 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) ) |
| 4 |
|
ax9 |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧 ) ) |
| 5 |
|
biimpr |
⊢ ( ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ) |
| 6 |
5
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑥 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ) |
| 7 |
|
stdpc5v |
⊢ ( ∀ 𝑥 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑧 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ∀ 𝑥 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑧 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) |
| 9 |
4 8
|
syl9 |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) ) |
| 10 |
9
|
alimdv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑤 ∀ 𝑥 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) ) |
| 11 |
3 10
|
syl5 |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) ) |
| 12 |
11
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) ) |
| 13 |
2 12
|
mpcom |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) |
| 14 |
13
|
axc4i |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) |
| 15 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑤 ∈ 𝑥 |
| 16 |
15
|
19.23 |
⊢ ( ∀ 𝑥 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ↔ ( ∃ 𝑥 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) ) |
| 17 |
|
19.8a |
⊢ ( 𝑤 ∈ 𝑧 → ∃ 𝑧 𝑤 ∈ 𝑧 ) |
| 18 |
|
elequ2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 19 |
18
|
cbvexvw |
⊢ ( ∃ 𝑧 𝑤 ∈ 𝑧 ↔ ∃ 𝑥 𝑤 ∈ 𝑥 ) |
| 20 |
17 19
|
sylib |
⊢ ( 𝑤 ∈ 𝑧 → ∃ 𝑥 𝑤 ∈ 𝑥 ) |
| 21 |
4
|
cbvalivw |
⊢ ( ∀ 𝑥 𝑤 ∈ 𝑥 → ∀ 𝑧 𝑤 ∈ 𝑧 ) |
| 22 |
20 21
|
imim12i |
⊢ ( ( ∃ 𝑥 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) ) |
| 23 |
16 22
|
sylbi |
⊢ ( ∀ 𝑥 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) ) |
| 24 |
23
|
alimi |
⊢ ( ∀ 𝑤 ∀ 𝑥 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) ) |
| 25 |
24
|
alcoms |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) ) |
| 26 |
25
|
alrimiv |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑥 𝑤 ∈ 𝑥 ) → ∀ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) ) |
| 27 |
|
nfa1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 𝑤 ∈ 𝑧 |
| 28 |
27
|
19.23 |
⊢ ( ∀ 𝑧 ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑧 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) ) |
| 29 |
|
ax9 |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ) |
| 30 |
29
|
spimvw |
⊢ ( ∀ 𝑧 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) |
| 31 |
17 30
|
imim12i |
⊢ ( ( ∃ 𝑧 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ) |
| 32 |
|
19.8a |
⊢ ( 𝑤 ∈ 𝑥 → ∃ 𝑥 𝑤 ∈ 𝑥 ) |
| 33 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) ) |
| 34 |
33
|
cbvexvw |
⊢ ( ∃ 𝑥 𝑤 ∈ 𝑥 ↔ ∃ 𝑧 𝑤 ∈ 𝑧 ) |
| 35 |
32 34
|
sylib |
⊢ ( 𝑤 ∈ 𝑥 → ∃ 𝑧 𝑤 ∈ 𝑧 ) |
| 36 |
|
sp |
⊢ ( ∀ 𝑧 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑧 ) |
| 37 |
35 36
|
imim12i |
⊢ ( ( ∃ 𝑧 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧 ) ) |
| 38 |
31 37
|
impbid |
⊢ ( ( ∃ 𝑧 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 39 |
28 38
|
sylbi |
⊢ ( ∀ 𝑧 ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 40 |
39
|
alimi |
⊢ ( ∀ 𝑤 ∀ 𝑧 ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 41 |
40
|
alcoms |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 42 |
41
|
axc4i |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 → ∀ 𝑧 𝑤 ∈ 𝑧 ) → ∀ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 43 |
14 26 42
|
3syl |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) → ∀ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 44 |
|
axextb |
⊢ ( 𝑥 = 𝑧 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) ) |
| 45 |
44
|
albii |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 ↔ ∀ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑧 ) ) |
| 46 |
|
axextb |
⊢ ( 𝑧 = 𝑥 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 47 |
46
|
albii |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑥 ) ) |
| 48 |
43 45 47
|
3imtr4i |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 𝑧 = 𝑥 ) |