Metamath Proof Explorer


Theorem axc11next

Description: This theorem shows that, given axextb , we can derive a version of axc11n . However, it is weaker than axc11n because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc11next ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 𝑧 = 𝑥 )

Proof

Step Hyp Ref Expression
1 ax-ext ( ∀ 𝑤 ( 𝑤𝑥𝑤𝑧 ) → 𝑥 = 𝑧 )
2 1 alimi ( ∀ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑥 𝑥 = 𝑧 )
3 ax-11 ( ∀ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑤𝑥 ( 𝑤𝑥𝑤𝑧 ) )
4 ax9 ( 𝑥 = 𝑧 → ( 𝑤𝑥𝑤𝑧 ) )
5 biimpr ( ( 𝑤𝑥𝑤𝑧 ) → ( 𝑤𝑧𝑤𝑥 ) )
6 5 alimi ( ∀ 𝑥 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑥 ( 𝑤𝑧𝑤𝑥 ) )
7 stdpc5v ( ∀ 𝑥 ( 𝑤𝑧𝑤𝑥 ) → ( 𝑤𝑧 → ∀ 𝑥 𝑤𝑥 ) )
8 6 7 syl ( ∀ 𝑥 ( 𝑤𝑥𝑤𝑧 ) → ( 𝑤𝑧 → ∀ 𝑥 𝑤𝑥 ) )
9 4 8 syl9 ( 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑤𝑥𝑤𝑧 ) → ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) ) )
10 9 alimdv ( 𝑥 = 𝑧 → ( ∀ 𝑤𝑥 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑤 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) ) )
11 3 10 syl5 ( 𝑥 = 𝑧 → ( ∀ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑤 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) ) )
12 11 sps ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑤 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) ) )
13 2 12 mpcom ( ∀ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑤 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) )
14 13 axc4i ( ∀ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑥𝑤 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) )
15 nfa1 𝑥𝑥 𝑤𝑥
16 15 19.23 ( ∀ 𝑥 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) ↔ ( ∃ 𝑥 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) )
17 19.8a ( 𝑤𝑧 → ∃ 𝑧 𝑤𝑧 )
18 elequ2 ( 𝑧 = 𝑥 → ( 𝑤𝑧𝑤𝑥 ) )
19 18 cbvexvw ( ∃ 𝑧 𝑤𝑧 ↔ ∃ 𝑥 𝑤𝑥 )
20 17 19 sylib ( 𝑤𝑧 → ∃ 𝑥 𝑤𝑥 )
21 4 cbvalivw ( ∀ 𝑥 𝑤𝑥 → ∀ 𝑧 𝑤𝑧 )
22 20 21 imim12i ( ( ∃ 𝑥 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) → ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) )
23 16 22 sylbi ( ∀ 𝑥 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) → ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) )
24 23 alimi ( ∀ 𝑤𝑥 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) → ∀ 𝑤 ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) )
25 24 alcoms ( ∀ 𝑥𝑤 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) → ∀ 𝑤 ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) )
26 25 alrimiv ( ∀ 𝑥𝑤 ( 𝑤𝑥 → ∀ 𝑥 𝑤𝑥 ) → ∀ 𝑧𝑤 ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) )
27 nfa1 𝑧𝑧 𝑤𝑧
28 27 19.23 ( ∀ 𝑧 ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) ↔ ( ∃ 𝑧 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) )
29 ax9 ( 𝑧 = 𝑥 → ( 𝑤𝑧𝑤𝑥 ) )
30 29 spimvw ( ∀ 𝑧 𝑤𝑧𝑤𝑥 )
31 17 30 imim12i ( ( ∃ 𝑧 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) → ( 𝑤𝑧𝑤𝑥 ) )
32 19.8a ( 𝑤𝑥 → ∃ 𝑥 𝑤𝑥 )
33 elequ2 ( 𝑥 = 𝑧 → ( 𝑤𝑥𝑤𝑧 ) )
34 33 cbvexvw ( ∃ 𝑥 𝑤𝑥 ↔ ∃ 𝑧 𝑤𝑧 )
35 32 34 sylib ( 𝑤𝑥 → ∃ 𝑧 𝑤𝑧 )
36 sp ( ∀ 𝑧 𝑤𝑧𝑤𝑧 )
37 35 36 imim12i ( ( ∃ 𝑧 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) → ( 𝑤𝑥𝑤𝑧 ) )
38 31 37 impbid ( ( ∃ 𝑧 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) → ( 𝑤𝑧𝑤𝑥 ) )
39 28 38 sylbi ( ∀ 𝑧 ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) → ( 𝑤𝑧𝑤𝑥 ) )
40 39 alimi ( ∀ 𝑤𝑧 ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) → ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) )
41 40 alcoms ( ∀ 𝑧𝑤 ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) → ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) )
42 41 axc4i ( ∀ 𝑧𝑤 ( 𝑤𝑧 → ∀ 𝑧 𝑤𝑧 ) → ∀ 𝑧𝑤 ( 𝑤𝑧𝑤𝑥 ) )
43 14 26 42 3syl ( ∀ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) → ∀ 𝑧𝑤 ( 𝑤𝑧𝑤𝑥 ) )
44 axextb ( 𝑥 = 𝑧 ↔ ∀ 𝑤 ( 𝑤𝑥𝑤𝑧 ) )
45 44 albii ( ∀ 𝑥 𝑥 = 𝑧 ↔ ∀ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) )
46 axextb ( 𝑧 = 𝑥 ↔ ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) )
47 46 albii ( ∀ 𝑧 𝑧 = 𝑥 ↔ ∀ 𝑧𝑤 ( 𝑤𝑧𝑤𝑥 ) )
48 43 45 47 3imtr4i ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 𝑧 = 𝑥 )