Metamath Proof Explorer


Theorem axc11next

Description: This theorem shows that, given axextb , we can derive a version of axc11n . However, it is weaker than axc11n because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc11next xx=zzz=x

Proof

Step Hyp Ref Expression
1 ax-ext wwxwzx=z
2 1 alimi xwwxwzxx=z
3 ax-11 xwwxwzwxwxwz
4 ax9 x=zwxwz
5 biimpr wxwzwzwx
6 5 alimi xwxwzxwzwx
7 stdpc5v xwzwxwzxwx
8 6 7 syl xwxwzwzxwx
9 4 8 syl9 x=zxwxwzwxxwx
10 9 alimdv x=zwxwxwzwwxxwx
11 3 10 syl5 x=zxwwxwzwwxxwx
12 11 sps xx=zxwwxwzwwxxwx
13 2 12 mpcom xwwxwzwwxxwx
14 13 axc4i xwwxwzxwwxxwx
15 nfa1 xxwx
16 15 19.23 xwxxwxxwxxwx
17 19.8a wzzwz
18 elequ2 z=xwzwx
19 18 cbvexvw zwzxwx
20 17 19 sylib wzxwx
21 4 cbvalivw xwxzwz
22 20 21 imim12i xwxxwxwzzwz
23 16 22 sylbi xwxxwxwzzwz
24 23 alimi wxwxxwxwwzzwz
25 24 alcoms xwwxxwxwwzzwz
26 25 alrimiv xwwxxwxzwwzzwz
27 nfa1 zzwz
28 27 19.23 zwzzwzzwzzwz
29 ax9 z=xwzwx
30 29 spimvw zwzwx
31 17 30 imim12i zwzzwzwzwx
32 19.8a wxxwx
33 elequ2 x=zwxwz
34 33 cbvexvw xwxzwz
35 32 34 sylib wxzwz
36 sp zwzwz
37 35 36 imim12i zwzzwzwxwz
38 31 37 impbid zwzzwzwzwx
39 28 38 sylbi zwzzwzwzwx
40 39 alimi wzwzzwzwwzwx
41 40 alcoms zwwzzwzwwzwx
42 41 axc4i zwwzzwzzwwzwx
43 14 26 42 3syl xwwxwzzwwzwx
44 axextb x=zwwxwz
45 44 albii xx=zxwwxwz
46 axextb z=xwwzwx
47 46 albii zz=xzwwzwx
48 43 45 47 3imtr4i xx=zzz=x