Description: This theorem shows that, given axextb , we can derive a version of axc11n . However, it is weaker than axc11n because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axc11next | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ext | |
|
2 | 1 | alimi | |
3 | ax-11 | |
|
4 | ax9 | |
|
5 | biimpr | |
|
6 | 5 | alimi | |
7 | stdpc5v | |
|
8 | 6 7 | syl | |
9 | 4 8 | syl9 | |
10 | 9 | alimdv | |
11 | 3 10 | syl5 | |
12 | 11 | sps | |
13 | 2 12 | mpcom | |
14 | 13 | axc4i | |
15 | nfa1 | |
|
16 | 15 | 19.23 | |
17 | 19.8a | |
|
18 | elequ2 | |
|
19 | 18 | cbvexvw | |
20 | 17 19 | sylib | |
21 | 4 | cbvalivw | |
22 | 20 21 | imim12i | |
23 | 16 22 | sylbi | |
24 | 23 | alimi | |
25 | 24 | alcoms | |
26 | 25 | alrimiv | |
27 | nfa1 | |
|
28 | 27 | 19.23 | |
29 | ax9 | |
|
30 | 29 | spimvw | |
31 | 17 30 | imim12i | |
32 | 19.8a | |
|
33 | elequ2 | |
|
34 | 33 | cbvexvw | |
35 | 32 34 | sylib | |
36 | sp | |
|
37 | 35 36 | imim12i | |
38 | 31 37 | impbid | |
39 | 28 38 | sylbi | |
40 | 39 | alimi | |
41 | 40 | alcoms | |
42 | 41 | axc4i | |
43 | 14 26 42 | 3syl | |
44 | axextb | |
|
45 | 44 | albii | |
46 | axextb | |
|
47 | 46 | albii | |
48 | 43 45 47 | 3imtr4i | |