Metamath Proof Explorer


Theorem axc11next

Description: This theorem shows that, given axextb , we can derive a version of axc11n . However, it is weaker than axc11n because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc11next x x = z z z = x

Proof

Step Hyp Ref Expression
1 ax-ext w w x w z x = z
2 1 alimi x w w x w z x x = z
3 ax-11 x w w x w z w x w x w z
4 ax9 x = z w x w z
5 biimpr w x w z w z w x
6 5 alimi x w x w z x w z w x
7 stdpc5v x w z w x w z x w x
8 6 7 syl x w x w z w z x w x
9 4 8 syl9 x = z x w x w z w x x w x
10 9 alimdv x = z w x w x w z w w x x w x
11 3 10 syl5 x = z x w w x w z w w x x w x
12 11 sps x x = z x w w x w z w w x x w x
13 2 12 mpcom x w w x w z w w x x w x
14 13 axc4i x w w x w z x w w x x w x
15 nfa1 x x w x
16 15 19.23 x w x x w x x w x x w x
17 19.8a w z z w z
18 elequ2 z = x w z w x
19 18 cbvexvw z w z x w x
20 17 19 sylib w z x w x
21 4 cbvalivw x w x z w z
22 20 21 imim12i x w x x w x w z z w z
23 16 22 sylbi x w x x w x w z z w z
24 23 alimi w x w x x w x w w z z w z
25 24 alcoms x w w x x w x w w z z w z
26 25 alrimiv x w w x x w x z w w z z w z
27 nfa1 z z w z
28 27 19.23 z w z z w z z w z z w z
29 ax9 z = x w z w x
30 29 spimvw z w z w x
31 17 30 imim12i z w z z w z w z w x
32 19.8a w x x w x
33 elequ2 x = z w x w z
34 33 cbvexvw x w x z w z
35 32 34 sylib w x z w z
36 sp z w z w z
37 35 36 imim12i z w z z w z w x w z
38 31 37 impbid z w z z w z w z w x
39 28 38 sylbi z w z z w z w z w x
40 39 alimi w z w z z w z w w z w x
41 40 alcoms z w w z z w z w w z w x
42 41 axc4i z w w z z w z z w w z w x
43 14 26 42 3syl x w w x w z z w w z w x
44 axextb x = z w w x w z
45 44 albii x x = z x w w x w z
46 axextb z = x w w z w x
47 46 albii z z = x z w w z w x
48 43 45 47 3imtr4i x x = z z z = x